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Abstract

This paper reviews the errors in determining
the center of a rescnance line which are duc to
residual imperfections in practical electronic
systems using sinusoidial frequency or phase
modulation. In particular the effects of residual
amplitude modulation, baseline distortion, and
harmonic distortion in the modulation process and
the demodulator are gqualitatively analyzed for a
Lorentzian line in the limit of small modulation
index. This permits one to easily calculate
analytically the frequency offsets as a function of
modulation index and the transfer function of the
fundamsntal and various harmonics of the modulation
frequency. Using this model onz can =asily
formulate zccurate tests for experimentally
measuring the frequency errors in practical servo
systems, even if the original assumptions about
small modulation index and =2 pure Lorentzian line
are not exactly fulfilled.

Introduction

tlany systems use sinusoidal frequsncy or phase
modulation of a prodbe frequency in orcder to find
the canter of a resonance line. The purpose of
this papsr is to revi.w the residusl imperfections
which occur in practical systems and the subszquent
errors in determining line center. In particular
the effects of residuzl amplitude modulation,
baseline distor<tion, and harmonic distortion in the
modulation and the demodulaticon process are
qualitatively znalyzed for a Lorentzian line in the
limit of emall modulation index, this permits one
to 23sily calculate analytically thes frequency
offsets as a function of mocdulation index and the
transfer function of the fundamental and various
narmonics of the modulation frequency. Based on
this model one can then compare the relative
susceptability of various servo configurations to
residual electronic imperfections., Additionally
one can easily formulate accurate tests for
exparimentally measuring the frequency errors in
practical servo systems, even If the original
assumptions about small modulation index and a pure
Lorentzian line are not exactly fulfilled.

Model of a Resonance Line and Error Signal

One of the most common, methods for determin-
ing the center of a resonance line with high
precision is to sinusoidally modulate the frequency
(or phase) of the probe and detect the phase of the
resulting amplitude modulated signal at the
fundamental of the modulating signil. The general
scheme is shown in Figure 1.

The various subsystems and their effect on
errors in determining the center of the resonance

will be analyzed in later sections.
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Fig. 1. Block diagram of a sinusoidally modulated
probe oscillator which can be locked to the center
of a reference line.

Curve a of Figure 2 shows a typical resonance
line that would be observed at point c¢ of Figure 1
as a function of slowly sweeping the frequency of
the probe (without modulation) across the
resonance. Curve b of Figure 2 is the derivative
of curve a.

For the moment, let's assume that the probe
output is a sinewave with a spectral width very
narrow compared to the width of the resonance shown
in Figure 2, curve a. If the center of the probe
is at the point A, then the output signal increases
as the frequency of the VCO is increased, and at
point B, the signal decreases as the probe
frequenay inereases. If the frequency of the probe
is swept back and forth (FM), then the signal has
both a dc and an ac component., If the deviation of
the FM is small compared to the half linewidth ¥,
then the demodulated and filtered output of the
synchronous detector (measured at Point D of Figure
1) fairly accurately reproduces the derivative of
curve a. MNote that in curve b, the point of zero
signal, which also has the steepest slope,
nominally occurs At the center of the resonance
line. This curve is referrod to as a frequency
discriminator curve. The signal at point D can be
us2d to steer the probe frequency because near line
center we now nhave a dc signal proportional to the
frequency error between the probe frequency and the
center of the resonance.
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Fig. 2. Reference line (a) and its first

derivative (b).

"US GOVERNMENT WORK IS NOT PROTECTED BY US COPYRIGHT"



Now let's examine this process in a little
more detail., More generally, assume that we have
a symmetric Lorentzian line superimposed on a

sloping and curved background. Then:
Y2 172
Signal Amp =
YZ*(w-m )
o]
+ Ky lwmwy) + Kz(w-wo)2 1)

where K1 and K, are the first two coefficients of a
Taylor expansion of the background about line
center, Y = W is the half angular lineswidth, w is
the instantanecus angular frequency of the probe,
and wg is the true center of the resonance,

Real frequency or phase modulators have small
non-linearities and therefore generate sm3ll
components of modulation at multiples of the
modulation frequency. Also the modulation
reference generally has some higher harmonic
components as well. Therefore let's assume that
the modulated signal is of the form

wosowy t Becos Qt - Kgsin 20t +
K5cos 29t + Kgsin 30t (2)
where 2 is the modulation frequency.

The effects of distortion in the reference and
the modulation process are contained in coeffi-
cients K3, K- and K6' This model assumes that the
residual “modulation at ©/2, @, 29, etc., due to
spurious signals on the probe control line is
small compared to that imposed by the modulator.
This places a heavy burden on the postfilter (see
Figure 1) especially in servos using a square wave
reference for the demodulation. The modulation
process can and usually does cause some amplitude
modulation, therefore another term, Ku cosfit, needs
to be added to equation 1. Substituting for w in
equation 1 and adding the K; term yields equaticn
3. It has been assumed that the amplitude
modulation is in phase with the frequency
modulation, which yields the maximum offset.

Signal Amp =

1 -1/2
1+ —— [(wy~w,) + B cos ot -
Y
K3sin 2at + Kgeos 20rt + Kgsin 3at]
+Kilwy - wy) + B cos qtl
+ Kylwy = wy) + B cos at]?
+ Kycos @t (3)

Near line center, with the coefficients K,, Ku, KS'
K6 very small compared to Y, and the modulation
amplitude B only slightly smaller than Y, the
denominator can be expanded using the approximation
1 8, 342.15 3
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Signal Amplitude =

BZ
- =5 cos 20t (1+8") (5a)
by
B
- —= fAwcos gt {1+8") (5b)
.YL
+ B K3 (sin Qt+sin 30t) (1+6") (5¢)
2Y2
- L k5 (cos atecos 3at) (1+6m) (54)
Y

- E? Kg (sin 292t + sin 47t) (1+8") (5e)
v

+ K, Becos @it (5f)
B?
*+ K, (28wBcos Qt+ 5 cos 20t) (5g)
+ K cos ot (5h)
3B 36 6
where &' = -2 = cos? ot + .267 = cos® ot ...
y 2 6
Y Y
2 6
en =+ 2 Boos? at -2.491 Boos® ot .
2 62 66

Auw = Wy Wy
Dc terms, and terms involving the product of two or
more small coefficients, eg. K3KS' have been
dropped.

Note that &' and 6" are even power series of
(B/Y)2 cos® Qt and could have been given in terms
of a Bessel function. They contain mixtures of
cos 2Qt, cos 4Qt, cos 6t ete. and have a finite
value averaged over a period of the modulation
frequency R.

Term 5a contains a dc contribution plus even
harmonics of @ (mostly 2nd) due to sweeping over
the line profile. Expanding term 5a yields

2 > 6
sa=1-2 -asE ek )
3 5 g
2Y Y Y
2 2 2
-1/ %—cos 20t (1 -3/u5?- + 267 2 L)
Y Y- Y
2 >
-1/4 E; cos 4qt (.129 Eg eed) (6)
< Y

(6)

Term 5b contains the desired error signal
proportional to the frequency error Aw. Its
harmonic content is odd with contributions at Qt,
39t, 50t, ete. coming from the expansion of &".
Note that dependaonce of this term on (B/Y)“ is the
same as for the unwanted error terms 5c¢ through Se.
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5b = -ASB[cos Qt (1 + %- E;_,,) +
E v2
2
% §§ cos 3t(1+...)] (7

Y

Fundamental Sinewave Demodulation

The most common types of demodulators used to
recover the error signal displayed in Equation 5
are the sinewave demodulator and the squarewave
demodulator. The primary distinction between the
two is the type of reference. The reference can be
at the frequency of modulation or at a higher
harmonic - typically the third.

The first type to be considered is the fundamental
sinewave demodulator. The detector of Figure 1 is
assumed Lo be linear. This is very important as
nonlinearities can cause intermodulation between
the various terms of Equation 4 yielding large
errors. These type of errors will not be analyzed
here. The function of the prefilter is to filter
noise and spurious signals from the detected signal
by narrowing the bandwidth. Of particular
importance is the reduction of the signals at 29t,
3L, 4Qt, etec. In addition to the potentials
errors originating from terms 5¢, 5d, Se, and 5f of
equation 4, the demodulator should be operated at
the highest possible level so as to minimize the
relative effects of dec offsets in the demodulator
output.

Befcre filtering, the signals at 2Qt, u4Qt, etc.

generally far exceed the noise near line center (Aw
= 0) and therefore limit the useful dynamic range
of the demodulator if not attenuated. Assume that
the prefilter zttenuates the signal at 20t by K12,
and by K13 at 30, ete.

The reference signal is further assumed to be
the same as that used in the mcdulator, phase
shifted by ¢, where ¢ is due to various delays in
the electronics and can be a function of the envi-
ronment-especially temperatura. For ¢<<1,
cos(Qt+¢) can be approximated as ces(Qt) + ¢sin(Qt)
yielding

Sa 8b
Ref = cos Qt + 3sin Qt -
3e Sd 8¢
K; sin 20t + Kg cos 2at + Kg sin 30t (8)

Mathematically, the effcct of the demodulator is to
multiply the signal of equation 5 by the reference
signal given in equation 8 [1].

The servo acts to force tha output of the
demodulator towards zero. The actual error depends
on the servo gain. If the dc servo gain, G1 Gg, is
sufficiently large, one can assume that the
demodulator output is zero. For simplicity the
modulator output has been averaged over three full
pericds of the modulation frequency Q and the
desired frequency cerror term, 9a, set opposite to
the spurious error terms in equation 9.
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The effective de offset [1] of the demodulator
is represented by Kd and is a function of the
total ac gain of the system, GAc'

9a 9b 9¢
? 2
Aw (1+8') = Y Ll +2L2Aw Ye
9d 9e 9f

2
$1/2K3p(146") + Ky 3= +1/2K5(1+6")

9g 9n
#1/2(K ) [KyB)(1-6") + K,BYk,
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2
2K, ¥
—_4ac (9)

+K6K7)1+6")

Term 9b is due to the linear component of the
background slope and is selected out of the error
signal by 8a. This error is just the ratio of the
background slope to the slope of the derivative
multiplied by the angular half bandwidth. In cases
where this effect is exceptionally large and/or
unmanageable, a third derivative lock can be used
at the expense of signal to noise. See later
discussion.

Term 9c¢ is also selected out of the error
signal by 8a and causes no frequency error by
itself, however in the presence of other error
terms it effectively modifies the angular half
width Y. This effect is usually small and can be
ignored.

Term 9d selected out of the error signal by
%b, is due to the out-of-phase component of the
second harmonic distortion in the phase modulator
(sin 20t), the effect of this term can be reduced
considerably by making ¢ small. Values of ¢
between .01 and .1 are generally easy to ach.syve
and maintain.

Term 9e is selected out of the error signal by
3a and is due to the fractional amplitude
modulation, Ku. at cos Qt. Since for most systems
¥/B = 1 the error is approximately K, multiplied by
the half angular bandwidth Y, This can be a major
limitation in some systems.

Term 9f, selected out of the error signal by
fa, is due to the mixing of the in-phase component
of the moculator harmonic distortion (cos 2Rt) with
the fundamental of modulation by the resonance.
This can be seen from the expansion of the cross
products in the denominator of eq. 3. Because of
this there is no method to suppress it other than
by making Kc small. Note that the offset is just
172 the amp?itude of the in phase 2nd harmeonic
distortion.

Term 9g is selected out of the error signal by
Kg and is due to the 2nd harmonic generation from
sweeping back and forth across the resonance. Near
line center the cos 22t error signals usually
dominate all other error signals. By making Ky,
small one can greatly reduce the susceptability to



’nd harmenic distortion in the demodulator and
permit G to be increased to the largest value
consistent with the noise in the bandwicth of the
demodulator.

Terms S%h and 91 are second order small and can
be neglected in this approximation.

Term 9j is dus to the dc offset in the
demodulator. Usually ch is independent of level
for small signal levels dbut at some point the
errors grow exponentially with signal level. By
making K12 very smzll, one can inecrease the signal
gain to the point that the noise around frequency o
in a bandwidth determined by the prefilter is just
below the maximum level for the demodulator. This
and B/Y = 1 minimizes the effect of Kao-

Thus, for systems where K], is small the most
important error terms for sinewave demodulation at
the fundamental are

Aw(1+6") = YTKy + 1/0Ka8(1+87) +

2 2
+1/2 K5(1+5") + 2Kde L

Ky B (10)

m|4

Fundamental Sguare Wave Demodulation

For many systems it is easier to implement a
squarewave democulator than it is to usc a sinewave
demodulator and K., is often mueh smaller. In this
instance the referasnce signal of =quation 8 is
replaced by:

1
Ref = cos Ot + §-ccs 30t + $sin Qt o+

&+ k) sin 300)

3 9

~K; sin 20t + Kg cos 29t (1)
where the terms varying as sin 6Qt or cos 554t have

been omitted.

It is easily shown that the frequency offset
errors of the closed-loop system are functionally

very similar as those derived in eq. 10 above.
2 5 ¥°
Aw(1+0") = YK, o+ z K3¢(1+6") + Ky )
2
% K5(1+6") +2K40 %— (12)

Third Harmonic Demodulation

In some cases the background slope is so
and/or unstable that if is advantageous to use
3rd harmonic reference to the demodulator. Assume
it is of the form

Ref = cos 30t + Ky, cos 5at.. .

large
a
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In this case tha significant frequency errors
are given by

Aw(1+6M") = E K%¢(1+6") +
(13}
B gy o 8 Y
375 3 de B

where the 5th order terms nhave been neglected.
Although the sensitivity to sloping background and
zmplitude modulation is virtually gone, the signal
is generally also reduced by a factor of 2 or 3
wnich increases the relative importance of 2nd
harmonic distortion in the modulator z2nd dc offset
in the demodulator. K;, shculd be kept small in
order to maximize Gac and thercby reduce the cffect
of Kyp»

Tests for Servo Errors

Errors generated from tnec K1 coefficient hnve
the same functional dependence on nmodulation width
3s the desired signal and are therefore difficult
to separate in a fundamental democdulation system,
Therefore, one generally his to measure the
background slope separately and calculate the:
offset. Orn2 could also compare the frequancy of
line center for a fundamental and a 3rd harmonic
demodulation system. In cases where a Ramsey
siructure is present, one can compare the frequency
of line center when locked to pairs of successive
lobes.

Errors generated from

Ky, K¢, and K7 are
generally small and can be

neglected.

Errors generated from K, can be separated out
frcm the other terms by varyling the phase shift §.
For most implementations, K, varies as B“.
Modeling of the modulator can also be helpful.

The errors associated with Ky can best be
determined by measuring the fractional amplitude
modulation at Q on the probe signzl. The phise
chosen for the K, term is the most likely and has
the largest error. Ku depends on the modulation
width B.

The errors zssociated with Ko are bast
illuminated by varying the modulation width B, A
plot of frequency change vs. B for 6 ~ C yields K¢
while the difference between that curve and the one
obtained with 8 ~ 0.2 carn be used tc determine K,.
K- can also be determined from a careful character-
ization of the phase modulator.

g 2r? unique to
ms and can be
KT? small this

The errors associated with ¥
the fundamental democdulator syste
illuminated by varying X;-. For
error can be totally neglected.

The errors originating from ch are best
sgzparated out by varying the zc gain. Varying the
de gain only changes the loop attack time
(bzndwidth) and should have no =ffect on these
offsets [1]). Another technique for illuminating
ch generated errors is to vary the 3zc gain with no
modulation on the probe and measure the dc error
signal.



Summary

A simple model of a resonance system probed by
a sinusoidally modulated probe signal has been
treated to expose the first order errors in
determining line center due to imperfections in the
electronics. Although this approach does not easily
produce rigorous values for the frequency errors,
in that it does not tske into account saturation
ete., it does yield the correct functional
dependence of the errors on modulation index, ac
gain, etc. This permits one to compare the offsets
in determining line center using various servo
configurations. As we've shown, in any servo
system with a fundamental demodulator reference,
the most serious freguency errors originate from
sloping background, 2nd harmonic distortion in the
frequency modulation, amplitude modulation on the
probe signal, and de offscts in the demodulator.
Servo systems utilizing thsz 2rd harmonic of the
modulation as a demodulator reference are generally
not sensitive to baseline tilt or amplitude
modulation on the probe, but have increased
sensitivity to 2nd harmonic distortion in the
modulator, and to dc offsets in the demodulator.
With the functional dependence outlined here it's
relatively easy to design sensitive tzsts of these
offsets even if the original assumption about a
pure Lorentzian line and small modulation index are
not exactly fulfilled.
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